Classification of imprecise data using interval Fisher discriminator

نویسندگان

  • Jafar Mansouri
  • Hadi Sadoghi Yazdi
  • Morteza Khademi
چکیده

In this paper, an imprecise data classification is considered using new version of Fisher discriminator, namely interval Fisher. In the conventional formulation of Fisher, elements of within-class scatter matrix (related to covariance matrix between clusters) and between-class scatter matrix (related to covariance matrix of centers of clusters) have single values; but in the interval Fisher, the elements of matrices are in the interval form and can vary in a range. The particle swarm optimization search method is used for solving a constrained optimization problem of the interval Fisher discriminator. Unlike conventional Fisher with one optimal hyperplane, interval Fisher gives two optimal hyperplanes thereupon three decision regions are obtained. Two classes with regard to imprecise scatter matrices are derived by decision making using these optimal hyperplanes. Also, fuzzy region lets us help in fuzzy decision over input test samples. Unlike a support vector classifier with two parallel hyperplanes, interval Fisher generally gives us two nonparallel hyperplanes. Experimental results show the suitability of this idea. C © 2011 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the overall performances of decision-making units in the presence of imprecise data

Data envelopment analysis (DEA) is a method for measuring the relative efficiencies of a set of decision-making units (DMUs) that use multiple inputs to produce multiple outputs. In this paper, we study the measurement of DMU performances in DEA in situations where input and/or output values are given as imprecise data. By imprecise data we mean situations where we only know that the actual val...

متن کامل

Estimating Most Productive Scale Size of the provinces of Iran in the Employment sector using Interval data in Imprecise Data Envelopment Analysis(IDEA)

Unemployment is one of the most important economic problems in Iran, so that many of its managers plan to increase employment rates. Increasing the employment rate needs to increase economic productivity which DEA is one of the most appropriate evaluation methods for estimating the productivity of similar organizations. Employment in the amount of data input and output can be just interval. In ...

متن کامل

The Efficiency of MSBM Model with Imprecise Data (Interval)

Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to...

متن کامل

A Note On Dual Models Of Interval DEA and Its Extension To Interval Data‎‎

In this article, we investigate the measurement of performance in DMUs in which input and/or output values are given as imprecise data. By imprecise data, we mean that in some cases, we only know that the actual values are inside certain intervals, and in other cases, data are specified only as ordinal preference information. In this article, we present two distinct perspectives for determining...

متن کامل

A new approach for audio classification and segmentation using Gabor wavelets and Fisher linear discriminator

Rapid increase in the amount of audio data demands an efficient method to automatically segment or classify audio stream based on its content. In this paper, based on the Gabor wavelet features, an audio classification and segmentation method is proposed. This method will first divide an audio stream into clips, each of which contains one-second audio information. Then, each clip is classified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2011